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Abstract

Using linear piezoelectricity theory, the effect of a Griffith crack on stress and electric fields in an infinite piezoelectric
material under electric and tension loading has been studied by using appropriate boundary conditions. A closed-form
solution to the Mode I fracture problem is obtained for external loading used to open the crack. By including elec-
trostatic energy in the calculation of crack driving force, the energy release rate is found to be the third power function
of the external loading if electric field inside the crack is not zero at the crack tip. The results may be used to explain
some nonlinear phenomenon observed in the indentation of piezoelectric ceramics. © 2001 Elsevier Science Ltd. All
rights reserved.
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1. Introduction

Smart structures using smart materials have potential applications in many areas, especially in con-
trolling motion that is related to structural deformation. In these smart materials, piezoelectric materials,
shape memory alloys, electrostrictive materials, and magnetostrictive materials have been widely used in
electromechanical actuators and sensors. The coupling between mechanical and electric fields in piezo-
electric materials provides a mechanism for sensing mechanical disturbances from the measurements of
induced electric potentials, and for altering structural responses via external electric fields. Among the
piezoelectric materials, piezoelectric ceramics are widely used due to their high piezoelectric performance.
However, piezoelectric ceramics in mechanical behavior are brittle and susceptible to cracking at all scales
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from microdomains to macrodevices. When a ceramic is poled by an electrostatic field of the order of MV/m,
cracks nucleate to relax the incompatible strains (Chung et al., 1989). Many static and cyclic failure of
devices have been described by Winzer et al. (1989).

The structural reliability of piezoelectric materials has drawn more and more attention as they are used
in microelectromechanical systems. The study of damage and fracture processes in piezoelectric ceramics
can provide better understanding of the mechanisms of piezoelectric cracking in the presence of defects such
as cracks and improve the device performance to increase system reliability. This has motivated the in-
vestigations of fracture mechanics of piezoelectric materials (Parton, 1976; Pak, 1990; Deeg, 1990; Shindo
et al., 1990; Kuo and Barnett, 1991; Suo et al., 1992; Dunn, 1994; Zhang and Tong, 1996; Makino and
Kmiya, 1994; Cao and Evans, 1994; Yang and Suo, 1994; Gao et al., 1997; Yang and Kao, 1999; Park and
Sun, 1995; Li et al., 1990; Kumar and Singh, 1995), and many important achievements have been made
over the course of many years. For a crack being treated as a mathematical slit without any thickness and
having a finite dielectric constant, there are two commonly used electric boundary conditions along the
crack faces. Parton (1976) modeled a crack as a traction free, but permeable slit, that is, the potential and
the normal component of the electric displacement are continuous across the crack,

¢ =¢  and DS =D,.

Deeg (1980) and Pak (1990) proposed another set of boundary conditions in the crack faces,
Df =D, =0,

which is based on two assumptions: (1) no external free charges in either crack faces, and (2) the electric
displacement in the crack is negligible. Based on the electric boundary conditions, Pak (1990) studied a
crack with its front coincident with the poling axis. Sosa and Pak (1990) analyzed a more general crack-tip
field by using an eigenfunction analysis. Shindo et al. (1990) investigated cracks in piezoelectric layers using
integral transforms. Kuo and Barnett (1991) carried out an asymptotic tip analysis. Pak (1990) and Suo
et al. (1992) reanalyzed the stress and electric fields near a finite crack. Dunn (1994) studied the effects of
crack face boundary conditions on the fracture mechanics of piezoelectric solids. Pak and Tobin (1993)
studied the electric boundary conditions in crack faces for piezoelectric materials. They found that crack
and the electric field at crack tip had multiple values under different limiting processes.

Recently, the use of the classical electric boundary conditions along the interface of dielectric materials
(the continuity of the normal component of electric displacement and tangential component of electric field)
in the fracture mechanics of piezoelectric materials has been suggested by Zhang and Hack (1992); Zhang
et al. (1996); Zhang (1994). Zhang et al. (1996) studied the effects of the boundary conditions by investi-
gating an elliptical cylinder cavity under antiplane loading. In the limiting condition, they found that the
two commonly used boundary conditions are the two extremes of the classical electric boundary conditions
and they were able to determine the electric field within the cavity (crack).

Ferroelectric ceramics are known to exhibit nonlinear and hysteresis behavior at large external loading
(Jona and Shirane, 1993). Cao and Evans (1994) found the nonlinear mechanical behavior of poled PZT
piezoelectrics. Some of the nonlinear behavior of piezoelectric ceramics have been studied by Yang and Suo
(1994), Lynch et al. (1995), Hao et al. (1996), and Gao et al. (1997). The application of linear piezoelectric
theory would be valid if only a small-scale yield is assumed (Gao et al. 1997). However, the linear pi-
ezoelectric fracture mechanics plays an important role in understanding the brittle fracture behavior in
piezoelectric ceramics. It will pave a pace for further studying the effect of microscale yielding on fracture
behavior of piezoelectric ceramics.

It is the purpose of this work to study the opening mode cracking under general mechanical and uniform
electric loading by using the classic electric boundary conditions. The Fourier transforms are used to reduce
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the problem to a solution of dual integral equations. Four different general solutions dependent on the
material constants are given. In addition, the energy release rate is given in a closed form.

2. Electromechanical equations

Consider a linear piezoelectric material, the governing equations in the Cartesian coordinates
x;(i =1,2,3) are given by

Oiji = 0 and D,‘ﬂ,‘ = O7 (l)

where o;; is the stress tensor, D; is the electric displacement vector, the comma denotes partial differentiation
with respect to the coordinate x;, and the Einstein summation convention over repeated indices is used. For
an anisotropic piezoelectric material, the constitutive relation is

0y = Cjuen — enjEr, and  D; = egey + exky, (2)
where ¢ is the strain tensor, £; is the electric field intensity, ¢, is the elastic stiffness tensor measured in a
constant electric field intensity, e;; is the piezoelectric tensor measured in possession of a spontancous
electric field, and ¢; is the dielectric tensor. Crystal symmetry places restrictions among the components of
any tensor that characterizes the material properties of a crystal. The interchange symmetry of the tensors
are

Cijkl = Cijik = Cjiki = Cjilk = Chlij; ey = ey and  €; = €. 3)

The relation between the strain tensor and the displacement, u;, is given by

(i + uji), 4)

8ij =

N —

and the electric field intensity is
Ei=—d, (5)

where ¢ is the electric potential.
Inside the crack filled with air, the electric potential satisfies the following equation

¢% =0 (6)

with D¢ = ¢ E?, the relation between the electric displacement and the electric field intensity, where ¢ is the
permittivity of vacuum. Here, the superscript ‘a’ represents the field variables inside the crack.

It is known that a crystal possessing a center of symmetry cannot be piezoelectric, because no combi-
nation of uniform stresses will produce the centers of gravity of the positive and negative charges and
produce dipole moment, which is necessary for the production of polarization by stresses (Mason, 1950).
Here, we consider only a transversely isotropic piezoelectric material of the hexagonal crystal class 6 mm.
The constitutive relations are
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g1 Ci1 Ci2 C13 0 0 0 &1 0 0 €3]
() Clp2 Ci11 C13 0 0 0 & 0 0 €31 E
03 Ci13 C13 C33 0 0 0 &3 0 0 €33 El
04 N 0 0 0 Cq4 0 0 &4 a 0 €5 E2 '
os 0 0 0 0 ¢y O & es 00 ’
O¢ 0 0 0 0 0 Ce6 &6 0 0 0 7
N )
&
D] 0 0 0 0 €1s 0 €11 0 0 E1
D=0 0 0 es 0 ofll®[+]0 & o E |,
D; e ey ez 0 0 0 “ 0 0 €33 E;
&5
&6
where
<0'1 0y 03 04 Os 06) _ (0'11 0» 033 03 013 012 )
& & & & & & B el &n &3 2e3 2e3 2ep ’
C11 = Ci111 = €222, Ci2 = C1122, C13 = C1133 = €233, C33 = (3333, C44 = C2323 = C3131,
Ce6 = C1212 = %(011 —cn), €31 = €311 = €3, €33 = €333, €15 = €113 = €23.

3. General solution of two-dimensional piezoelectric coupling problems

For two-dimensional piezoelectric coupling problems in plane strain, the governing equations become
uy %uy %us %

gz 2 +cu——= o + (c13 + ca4) R + (es1 + els)m =
%u, %us ?us *¢ Rt
— =0 9
(013+C44)axlax3+ 44az+63362+€1562+€3362 ) 9)
@zul 62u3 62u3 62(]5 62(]5
et P AR A
(€31 +€15)6x16x3 +eis—=—= o +exn——= o €11 o €33 o2 )
which can be expressed as
231
o) ws | =0, (10)
¢
where the operator is
ci1 % + Caa % (e13 + caa) —ax?;,q (es1 +ens) —ar?;xz
[D] = (013+C44)ﬁ C44a%+033% 615~z+e33aax . (11)

o o’ ol
(e31 +e15) 5o 615@4'633@ (611 a2 + €33 ax)
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The determinant of [D] is

o6 o6 o6 o6
det[D]:aa—xg—l—bm—i-cm—i-da—ﬂ (12)
in which
a= —cCuy (653 + 033633)3
b= [2633013(631 +e15) + €313 + C44)2 —cn (6%3 + 033633) — cu(c33€11 + casess — 2exzen)
— cas(esr + 915)2} )
(13)

c= [2615(631 +e1s)(c13 + caa) + €n1(c1s + 6’44)2 — c11(casess + c3z€11 + 2esses)

— Cus [e?s + cuserr + (€3 + 615)2H )
d = —ci(efs + cuen).

Based on the cofactors 4;; of det[D] (i,j = 1,2,3), and the method developed by Ding et al. (1996), the
general solutions of Eq. (12) are

(u17u3a¢)T = (AilaAiZaAB)TF (l: 1a253> (14>
with F satisfying the equation

det[D]F = 0. (15)
In the following analysis, we use only (4,1, 42, 453) for problems symmetric about the x;-axis

o ot

- Ox30x; o dx 0x3’
ot ot o
a—x? — 03 —6x%6x§ — C44€33 6_x‘3“
ot o ot

Ay = —Cr1€15 73 — =575 — C44€33 27
; oxt Ox30x3 Toxy’

AZl

Ay = —ciien

where

o (€13 + cas)enn + (€15 + e3r)ers

aw | | (134 cas)ess + (ers +ear)ess (17)
o3 ci€3 + cuenn + (e1s + 631)2 '

oy C13€33 — 6’13(615 + 631) — Cuq€3]

Using the symmetry on x;-axis and the Fourier transform on x;, F can be expressed as
2 o0
F = . / f(& x3)cos(xE)dE. (18)
0

Substitution of Eq. (18) into Eq. (15) yields

d°f L4 &S

a——bl—F+cl"—5—-d& =0, (19)
dx§ dx} dx?

which is a homogeneous equation. The solution of f'is a function of exp(4&x;) in which 7 is the root of the
algebraic equation
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all = b)) —d=0. (20)
Let > =22+ b/3a. Then, Eq. (20) becomes
P 4pi®+q=0 (21)
with
7 ¢ be d 2B
2. ° 2 _*_ 7 22
P=34 * a and ¢ 3¢ a 2743 (22)

whose roots (22) are

o 3 ) {4 () .

where ® = (—1 4 iv/3)/2. The properties of the roots 2> depends on the parameter, 4 = ¢/4 + p*/27: (1)
4> 0~ one real root and a palr of conjugate complex roots, (2) 4 =0, three real roots, (a) p=¢ =0,
B=72=72=0,(b)¢*/4=—p/2T #0, )i # 23 =7% and (3) 4 < 0, three real roots, 1} # /2 # /2. Based
on Egs. (13) and (20), we obtain

2
22252 — cii(efs + caen)
1

DAL = >0, 24
2 caa(€3; + cx3€33) 24

which indicates that at least one of the roots 27(i = 1,2,3) is positive.
Here, consider only the upper plane (x; > 0), under which the fields approach constant values as
x3 — oo. Depending on the properties of /2, the function f has four different general solutions:

(a) If 47 # /5 # 25 > 0, then

S = Bie T 4 Bre i 4 frem i, (25)
(b) If 27 # 43 = J3 > 0, then

S =B Bre T 4 Bilnge o, (26)
(c) If /7 = /3 = J3 > 0, then

f ﬁ e_/ulk)(} —|—[32§x3e 1éxs +ﬁ £2 2 —Algx3 (27)

(d) If )»1 > 0 and /12, )v3 <0or 22 and /13 being a pair of conjugate complex roots, then, in this case, the 4,
and /; are a pair of conjugate complexes —d + im. The solution of f'is

f = e 1% 4 Bre % cosmérs + fie 0 sinméxs, (28)
where 6 and ® > 0 and f; (i = 1,2,3) is a function of ¢ to be determined by the boundary conditions.

Using Egs. (25)—(28) and Egs. (14) and (16), the displacement, stress, electric and potential fields for the
problems symmetric about the x3;-axis can be readily obtained and briefly given in Appendix A.
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4. Opening mode internal crack problems

Consider a finite crack of length 2a, embedded in an infinite piezoelectric medium subjected to electric
and mechanical loading as shown in Fig. 1. Due to the linearity of the governing equations and the con-
stitutive relations, we will consider only two different external loading. The first one is a pure mechanical
loading applied to the crack faces without external electric field. The second considers a uniform electric
field applied at infinity without external mechanical loading, which can be easily implemented in the lab-
oratory.

The electric boundary conditions along the interface between the piezoelectric medium and the dielectric
medium for the upper crack face are

El(x170+) :Eéll(x1707) and D3()C1,0+) :Dg(xlaoi) for |X1| < ay, (29)
which is identical to
¢(x1,0+) = (i)“(th*) and D3<X1,0+) = D‘3’(x1,0’) fOT |X1‘ < ap. (30)
Similarly, we can have the electric boundary conditions for the lower crack face. The shear stress is
0'13()61,0):0. (31)
D; or E;
X3
A
X4
< —>
033(X4)

KRR

D3 or E3

Fig. 1. A Griffith crack in an infinite piezoelectric material.
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Due to the symmetry, the displacement and electric potential at the plane x; = 0 satisfy
u3(x1,0) =0 and d)(xl,O) =0 for |X1| > agp. (32)
4.1. Mechanical loading on the crack faces in the absence of electric field

In this section, we consider the case that the mechanical loading is applied to the crack faces without
external electric field. The other boundary conditions are

033 = 07 E3 =0 as X3 — 00, (33)
0'33()61,0) = Uo(xl) for |X1‘ < ayp. (34)
Due to the symmetry, the solution of Eq. (6) can be expressed as
>~ 2n + 1 2n + 1 .
P = sgn(xg)zojﬁ,, sinh < n2c_z: x3) cos ( nz;: xl) inside the crack (|x;| < ao), (35)

where f8,(n = 1,2,3,...) are constants to be determined.
Using the boundary conditions (30)—(34), the field distributions given in Appendix A and Eq. (35), we
have the following cases:

(i) for the shear stress

bupy+ b, + bisf; =0, (36)
(i1) for the electric potential
by By + bnpy + bfis =0, (37)

(ii1) for the normal stress
2 3 00
EZZ)&- / B,& cos (&x;)dé = ao(x;)  for |x| < a, (38)
i=1 0
(iv) for the displacement
) 3 00
EZbM / B,E cos (éxy)dE =0 for |xi| > ao, (39)
i=1 0
(v) for the electric displacement
2 2n+ 1 2n+1
E;bﬁ/o B,& cos (&x;)dé = —GOZﬂ e s< S xl) for |x;| < ao, (40)

where b;(i =1,2,3,4,5 and j = 1,2, 3) are constants depending on the material properties of piezoelectric
materials, which are given in Appendix B.
Egs. (36) and (37) gives

A4 4
Pr="yPs and fr="2f; (41)

with 4 = b11b22 — b]zbz], A] = b12b23 — b22b13, and Az = blzblg — b11b23. Substituting Eq (41) into EqS (3)
and (39), we obtain
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2/(4 V| o
- (Z]b,ﬂ +jzb32 +b33> / Bs& cos (éxi)dE = ao(x;)  for |xi| < ay, (42)
0

/ By&*cos (éxy)dé =0 for |x;| > ao, (43)

0
which are a special case of a pair of dual integral equations (Sneddon, 1951). The complete solution is

Bs = \/7 &t g )o(Ey)dy, (44)
()—\F b+ 2o+ ) and ()—/dex (45)

8V) = p 31 32 33 ) WV 6])’—0 m 1-

Using Egs. (40) and (42), the electric field inside the crack is

1 A1bs) + A2bsy + Abs;
€0 A1b31 + Ayb3 + Ab3%

which has the similar field distribution to the stress applied onto the crack faces. The stress field in front of
the crack tip is

2/ 4 A a o0
033(x1,0) = \/;(jbﬂ +Z2b32 + b33> dxil /0 g()’)dy/o Jo(&y)sin (&x)de, (47)

which can be further simplified as

2( 4, Ay
033()61,0) — \/7< b3 + b32 + b33> / dy for ‘X1| > ag. (48)
Y dx1 A/ X

Eq. (48) can be expressed as follows by substituting Eq. (45), performing integration by parts, and carrying
out the differentiation,

E3(x) =

(xl) and Ef(xl) =0 for |.Xf1| < ay, (46)

2 X
033(x1,0) = — = (ﬁq(ao) —q(0) —x, for |x;| > ap. (49)

/ L ds
T X =4 0 xi -2

The shape of crack, electric field and the electric displacement in front of the crack tip are
2 A1ba1 + Asbgy + Abys o tq(t)

0) = dr fi < 50
(1, 0) 7 A 1b31 + Ayb3y + Abss £ —x or ba| < ao, (50)
2 A1be1 + Axbey + Ab,s X1 /
E 0) = — ——dt fi
3()61, ) T Ayby + doby + Abss x%_a%Q(ao X1 \/;—_——_ or |x1| > ay,
(51)
2 Aybsy + Aybsy + Abss X /ao q'(t)
Ds(x,0) = — ay) — q(0) — x ———2_dr| for |x;| > ao,
3(31,0) A b31+Azb3z+Ab33< x%faéﬂ 0) = 4(0) == 0 x} — 1 b 0

(52)

and the electric potential is zero at x; = 0, where b,; (j = 1,2,3) are constants depending on material
properties. Egs. (49), (51) and (52) show that all of the stress field, electric field, and electric displacement
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have the square root singularity in front of crack tip. As defined by Pak (1990), the stress intensity factor
and electric displacement intensity factor are

ap
K = lim \/27'5()61 — a0)033 X], = \/f % XI dxh (53)

x—ay a; —x3

D _ A1bsy + Aybsy + Absz
A1b3y + Ayb3y 4 Absz

(54)

The stress intensity factor is independent of the electromechanical coupling for linear piezoelectric materials
under mechanical loading only.

Here, we consider two important cases: (1) a uniform mechanical loading applied onto the crack faces,
and (2) a point loading applied in the middle of the crack faces. For a uniform mechanical loading,
a33(x1,0) = —ay, there are

A1bsy + Aybsy 4 Abss

K/ = \/ma d KP= V/ . 55

1T VIR AR R by + Mobsy + Ay, V7 G9)
For a point loading applied in the middle of the crack faces, we have
0'33()C1,0) = —605()(1,0) for |)C1‘ < ay (56)
where 6( ) is the delta function. Substituting Eq. (56) into Egs. (53) and (54), the intensity factors are

- ap p  A1bsy + Asbsy + Abss

K7 =,/— nd K . 57
! \/;GO an T Aybyy + Arby + Abss 60 (57

4.2. Far field electric loading in the absence of mechanical loading

The important property of piezoelectric materials is the coupling effect between mechanical and electric
fields. As discussed in Section 4.1, mechanical loading will generate electric field with field singularity in
front of the crack tip. In this section, we analyze the effect of a constant far field electric loading on the
deformation of linear piezoelectric materials. There are two different sets of boundary conditions. The first
set is

033 = 0, E3 = —Eo as x3 — 00, (58)

0'33()61,0) =0 for |X1‘ < ay, (59)

which corresponds to traction free boundary condition at infinity and the electric field applies tension
loading on piezoelectric medium. Using boundary conditions (58), the field distributions inside piezoelectric
medium are

€33

¢ = Eox;, uy = —— Eox;3, (60)
C33
and
€33 €§3
E=-2(14 Eq (61)
€0 C33€33

inside the crack. It is obvious that none of the fields is singular and all the intensity factors are zero.
The second set corresponds to the fixed boundary condition — the strain/displacement of piezoelectric
materials at infinity is zero. Eq. (58) becomes
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%Mj = O, E3 = 7Eo as x3 — OQ. (62)
Using Eq. (14), the displacement field and electric potential satisfying Eq. (62) can be expressed as
(ur,u3, §)" = (4, 4o, 43)'F + (0,0, Egxs) ", (63)
2 o0
F= p / f(&,x3)cos(x&)dE, (64)
0

where f(&,x;) has the same expression as in Eqs. (25)—(28) with f;(i = 1,2,3) to be determined. Using
boundary conditions and the same procedure as in the above section, we obtain the following equations:

(1) for the shear stress

biify + bi2fy + bisp; =0, (65)
(ii) for the electric potential
b Py + bnfsy + bify =0, (66)
(iii) for the normal stress
) 3 00
Ezb3i/ B.& cos (éxi)dé = —exsEy  for |xi| < ay, (67)
i=1 0
(iv) for the displacement
2 3 00
=S b / B.& cos(&x)dE =0 for | > a, (68)
i=1 0
(v) for the electric displacement
2 3 9
EZbSi/ ﬁiés COS(éJﬁ)dé — e33Ey = ¢gE° for |X1| < ay, (69)
i=1 0
where b;;(i = 1-5 and j = 1-3) are given in Appendix B. The solutions of (i =1,2,3) are
T apessEoJ) (Eag) (A 4 !
ﬁ3:—§—0 33 251(5 ) (Zlb31+jzb3z+b33> ; (70)

A A
Pr="3F and fy="2p;
with A4 = by by — biabyy, Ay = biabys — bypbyz, and A, = b,by3 — by bas. The electric field inside the crack is

Eo [ A1bsy + Aybsy + Abs;
A1b3y + Ayb3y + Absz

E;’(xl) = — es; + €33> and Etf(xl) =0 for |X1| < ay (71)

€
proportional to the applied field.

The stress component, shape of crack, electric field and the electric displacement in front of the crack tip
are

E
033(x1,0) = % for |x1| > ao, (72)
X1 —dy
MA1b Arb Ab
u3(X170) — 1 * 2742 * nl 633E() aé — x% fOI' |X1| < ap, (73)

 Myb3y + Asbyy + Aby
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Aibey + Asbey + Abes X1
Ez(x,0) = -1 E,—E, f > ap, 74
3(41,0) A1b31 + Axbs; + Abss ( x}—a} >e33 ’ o for baf > ag (74)
Aybsi + Aybsy + Absz X1
D 0) = —1 Ey— ennEy f 75
3(41,0) A1b3) + Azbsy + Abs; ( X} —aj >e33 o= enko for | > a, (73)

and the electric potential is zero at x3 = 0. Egs. (72), (74) and (75) show that all of the stress field, electric
field, and electric displacement have the square root singularity in front of crack tip, which are different
from those with the traction free boundary conditions. The stress intensity factor and electric displacement
intensity factor are

. Absy + Aybsy + Ab
KI = \/Tta()€33E() and KID = Aibi n Azbz —|—Abjz \/1'E610€33E(). (76)

5. Energy release rate

The energy release rate for Mode I crack propagation can be obtained by calculating the energy released
in closing the crack tip over an infinitesimal distance Ax;. Considering the extension and closure of the
crack increment CC’ as shown in Fig. 2. The strain energy released during the closure C' — C is

ap 1
OUmech = 2/ 5033u3dx1, (77)
ap+3x
where the stress o33 is that across CC’ prior to extension; the displacement w3 is that across CC’ prior to
closure.
The electrostatic energy released to close crack from C’ to C'is
ao

o 1 1 1
OUetect Z/ §¢(x170+)D3dx1 —/ = ¢(x1,07)Dsdx; = —ZE”/ = Dsuszdx, (78)

0+0x] ap+0x; 2 ap+3x;

a0

where the electric displacement D; is that across CC’ prior to extension. The energy release rate is given by

: 6 Umec UCCC 1
G:—hm—( h + Uetee)

ap+0x;
= — — ED dx;. 79
3x—0 ox; x1—0 Ox /a (033 3)u3 ! ( )

0

constant disp.
Using the field distribution in front of the crack tip, the energy release rate is
. us ()Cl 5 0)
G = Vn(K! — E°KP) lim —————.
( 1 1 )xl_’aa /2((10 —JC])

Both electric field inside the crack and electric displacement in front of the crack contribute to the energy
release rate for Mode I crack propagation in linear piezoelectric materials.

(80)

OX 4
- - .
~ - ~
-~ e ]
c= &
— X1
-

Fig. 2. Opening and closure of crack.
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For mechanical loading applied onto the crack faces in the absence of electric field, consider two im-
portant cases: (1) a uniform mechanical loading applied onto the crack faces, and (2) a point loading
applied in the middle of the crack faces. For a uniform mechanical loading, 033(x;,0) = —ay, there is

> a0 [ A1bsi + Aobsy + Absy | P\ A1bay + Asbyy + Abss
G = napoy| 1 +— . (81)
€0 | A1b31 + Azbz; + Absz A1by1 + Aybyy + Abs;
For a point force applied in the middle of the crack as;3(x;,0) = —a6(x;,0), energy release rate is
2 A1b A2b Ab
G:aoa§£ 1041 + 42047 + a3 (82)
. Arbsy + Axbs; + Abss
For a far field electric loading in the absence of mechanical loading, the energy release rate is
Eq [ A1bsy + Aybsy + Abss A1bsy + Aybsy + Abs;
G=m Eo) |1 +=2 ( + )
ao(eEn) { €0 \ 41031 + d2b3; + Ab3; s A1b31 + Azb3y + Abs;
A1byy + Arbsy + Abys (83)

x )
A1b3y + Ayb3y + Abss

Eqgs. (81) and (83) indicate that the crack driving force for Mode I crack propagation is the third power
function of uniform external loading, which is from the contribution of electrostatic energy required to
propagate the crack. While the crack driving force is only proportional to the square of the external loading
for a point loading applied to the crack faces, because electric field inside the crack is zero at the crack tip.

As an example, consider PZT-4 piezoelectric ceramics. The poling direction is assumed to be parallel to
the x3-axis. Its material properties are listed in Table 1 (Park and Sun, 1995). where N is the force in
Newtons, C is the charge in Coulombs, V is the electric voltage in volts, and m is the length in meter. The
eigenvalues of the eigenequation (20) are

A1p = £1.19103, 34 = —1.08707 £ 0.274391, Ase = 1.08707 & 0.274391.

It is clear that case (d) of Eq. (28) does exist for piezoelectric materials. As shown in Fig. 3, the stress
distribution in front of the crack tip has the square root singularity, which is similar to the crack-tip be-
havior of Mode I crack in linear fracture mechanics. Fig. 4 displays the normal stress distribution along the
y-axis, which decreases with the distance from the crack face. The distribution of electric potential along the
y-axis is plotted in Fig. 5. It is interesting that electric potential first increases with the distance, reaches

Table 1
Materials properties of PZT-4 piezoelectric ceramics

Elastic constants (10'° N/m?)

C1 13.9
C12 778
C13 7.43
C33 11.3
Ca4 2.56
Piezoelectric constants (C/m?)

es3 -6.98
€33 13.84
€is 13.44

Dielectric permittivities (10~° C/Vm)
€n 6.00
€33 5.47
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Fig. 3. Stress distribution in front of the crack tip under opening mode loading without externally applied electric field.
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Fig. 4. Stress distribution along the y-axis under opening mode loading without externally applied electric field.
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Fig. 5. Deformation induced electric field along the y-axis under opening mode loading.
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Fig. 6. Nonlinear behavior of crack driving force.

the maximum, and then decreases. The strongest electromechanical interaction along the y-axis is not at the
crack faces.
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Fig. 6 shows the crack driving force as a function of a uniform mechanical loading applied to the crack
face. For load less than 100 MPa, the crack driving force can be approximated as proportional to the
square of the mechanical load similar to linear fracture mechanics. Further increase of the load will increase
the effect of the electromechanical interaction on the crack driving force and lead to the third power de-
pendence of the crack driving force on the external load.

6. Conclusion

The electromechanical problem of a crack in an infinite piezoelectric material under electric and tension
loading was studied by using the appropriate electrical boundaries on the crack faces. Four general solu-
tions for a transversely isotropic piezoelectric material of the hexagonal crystal class 6mm have been ob-
tained. Closed form solution of the electric potential, electric displacement field, displacement field, and
stress field were obtained by using the Fourier transformation. Stress and electric field singularities were
found in front of crack tip, which is similar to linear fracture mechanics. The electric field inside the crack
turns out to be proportional to the mechanical loading if there is no electric loading. By including the
contribution of the electrostatic energy inside the crack in the calculation of crack driving force in Mode 1
crack, it was found that the crack extension force is the third power function of the external loading if the
electric field inside crack is not zero at crack tip. This is a nonlinear phenomenon, which was not addressed
before.

Appendix A

Based on the solution of the auxiliary function f, the displacement, stresses, electric, and potential field
on the upper plane are easily calculated by using Mathematica and substituting Egs. (25)—(28) into Eqgs. (14)
and (16). Here, we give only the field functions for )f # Aé #* ﬂé > 0:

2 3 5 00 . 12
=3 (- : . fxp e e de, Al
u n;A( o —i—oczA,)/O B,E*sin (éx e £ (A1)
2 3 00 o
Uy = — EZ(CHE” — 0!3/1? + 044633/1?) / ﬂif4cos(§x1)e_”"gx3df, (AZ)
i=1 0
2 > 2 4 > 4 —Jiéx
¢ = —52(011615 — OC4)»I- + C44€33j.l-) / ﬂlf COS(f.X'])C e 3d§, (A3)
i=1 0
2 3 00 o
El = — EZ(CHEU — 0(4/1[2 + C44€33j~?) / ﬁiés sin(fxl)e”"'mdé, (A4)
i=1 0
2 3 00 o
E3 = —EZL (6’11615 — OC4)»? + C44€33i?) / Bifs COS (fxl)e""“»‘dé, (AS)
i=1 0

3

2
o1 = E;Ai [c“ ( — o+ 062/1,?) +ci3 (011615 - 0€37»,? + C44€33/1?)

+ es3 (011615 — OC4/"L? + C44€33)L?)} / ﬂifs Cos(fxl)e_;"é“dé, (A6)
0
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3
2

12 22 24

033 = - g i [013( —op + OCM,-) +c33 (011615 —o3A; + c44633A,-)

i=1

+ es3 (6‘11615 — OC4}»? + C44€33/1?)] / ﬁiés COS (fxl)e*’l"@“dﬁ, (A7)
0

3
2
) 2 2 4
o3 = pu g [C4M,- (061 — 062/1,») + Caa (611611 — A + C44€33)»1~)
=1

+ers (011615 — 0(4)»? + C44€33/1?)] / ﬂifs sin(fx] )eiiiéndf. (Ag)
0

Appendix B

Based on the solution of the auxiliary function f, constants b;; are obtained from Apendix A by setting
x; = 0. Here, only the constants b;; for 27 # /3 # /3 > 0 are given as follows:

>
S
|

)2 2 2 4 )2 4
= Caas; (061 - 062)»‘,-) + Caq (611611 - Ola/l,— + C44€33/li) + 615(011615 — i+ C44€33)».,-), (B.1)
2 24
sz = —cype5 + 064114 — C44€33/Lj7 (B2)

b3j = C13/1j( — o+ OCZJVJZ') + 033/1j (611611 - 063112- + C44€33/1j) + )7633 (011615 — O£4}~5 + C44€33)v?), (B3)

by = crien — og)é + 044633/1?, .
2 22 4 ; i
bs, = /1/ {631 ( —oy 052’5-) + es3 (611611 — 034; + C44633/1j) — €33 (611615 - O€4ij + C44e33/Lj)i|- (B-5)
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